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A B S T R A C T   

Waterlogging disasters seriously affect residents’ lives. Investigating the factors affecting waterlogging is crucial 
for mitigating waterlogging. Although waterlogging is closely related to land-use patterns, most of the previous 
studies have analyzed only the impact of urban horizontal patterns on waterlogging at a single scale. Few studies 
have focused on the role of urban vertical patterns from a multiscale perspective. Therefore, this study inves
tigated the influence of various factors on the density of waterlogging points at grid scales of 1–5 km using 
Pearson correlation analysis and the random forest model. We conducted a case study for Shenzhen City, and the 
results show that the building coverage ratio, building crowding degree, building density, proportion of 
impervious surfaces, proportion of green space, and population density are the most important factors. Moreover, 
the urban horizontal and vertical patterns have significant scale effects on waterlogging. The influence of hor
izontal patterns on waterlogging is maximum at a scale of 3 km, while the influence and dominance of the 
vertical patterns increase with scale. Therefore, controlling building congestion is necessary for alleviating 
waterlogging, and the rational planning of urban horizontal and vertical patterns is important for the con
struction of sponge cities. Our results provide decision support for urban land-use optimization and waterlogging 
mitigation, thereby facilitating sustainable environmental management.   

1. Introduction 

Human activities have a profound impact on urban environments 
(Janizadeh et al., 2021; Lourenço et al., 2020; Ma et al., 2024; Pal et al., 
2022). Urban waterlogging is a frequent and severe disaster that occurs 
in major cities worldwide, causing socioeconomic and environmental 
losses that hinder sustainable development (Chen et al., 2023; Peng 
et al., 2024; Shi et al., 2020; Su et al., 2018). Governments have pro
posed various policies for addressing waterlogging problems. For 
example, the United States suggests the implementation of the “Low 
Impact Development” strategy (Ahiablame et al., 2012; Pyke et al., 
2011), and China promotes sponge city planning (Li et al., 2017; Xia 
et al., 2017). In this regard, clarifying the factors affecting waterlogging 
is fundamental for sustainable environmental management (Chen et al., 
2015; Liu et al., 2023b; Shan et al., 2021; Thanvisitthpon et al., 2020; 
Yuan et al., 2020). 

Previous studies have shown that urban waterlogging is significantly 
affected by both natural and anthropogenic factors (Hettiarachchi et al., 

2018; Li and Bortolot, 2022; Li et al., 2023a; Tran et al., 2020; Wu et al., 
2019). In terms of natural factors, Tehrany et al. (2019) stated that 
topographic features (e.g., slope and elevation) have a significant impact 
on waterlogging. Wang et al. (2023b) indicated that extreme rainfall is 
the main factor affecting urban waterlogging. Fowler et al. (2021) re
ported that short-term extreme rainfall is highly likely to cause water
logging. Zhang et al. (2020b) identified vegetation abundance and 
cumulative precipitation as the main driving factors for waterlogging. 
Several studies have shown how various anthropogenic factors, partic
ularly urban spatial patterns, significantly affect waterlogging (Gu et al., 
2023; Qian et al., 2021; Wu et al., 2020; Yang et al., 2022; Zhang et al., 
2023; Zhang et al., 2020a). 

In fact, urban spatial patterns are the physical characteristics of the 
built environment in both horizontal and vertical dimensions (Al-Kod
many, 2018; Wang et al., 2023c; Zheng et al., 2017). The horizontal 
dimension of urban spatial patterns refers to the layout and components 
of land use in cities, specifically the composition and configuration of 
land use parcels, while the vertical dimension of urban spatial patterns 
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refers to the vertical arrangement and design of buildings in cities (Cao 
et al., 2021; Guo et al., 2023; Salvati et al., 2013). Urban vertical pat
terns not only affect a city’s appearance (Chen, 2022; He et al., 2017), 
but also exert a substantial influence on the local environment and 
economy (Chen et al., 2020; Lin et al., 2023). 

However, previous studies have focused mainly on the relationship 
between urban horizontal patterns and waterlogging. Notably, the 
probability of waterlogging increases with the proportion of impervious 
surfaces. Areas with a higher proportion of impervious surfaces, such as 
intersections and overpasses, are prone to waterlogging (Du et al., 2022; 
Liu et al., 2023a). Furthermore, the risk of waterlogging is generally 
positively related to factors such as the proportion of built-up areas 
(Wang et al., 2022), the proportion of high-density residential and in
dustrial areas (Qi and Zhang, 2022), the patch density of impervious 
surfaces and road density (Li et al., 2022). Conversely, the risk of 
waterlogging is negatively related to the proportion of green spaces 
(Yang et al., 2023) and the proportion of water bodies (Li et al., 2024). In 
summary, all these studies demonstrate that horizontal urban patterns 
play an important role in waterlogging. 

Some studies have shown that urban vertical patterns are also closely 
related to waterlogging. Li et al. (2023b) found that building indicators 
have a significant impact on waterlogging at the subbasin scale. Son and 
Ban (2022) suggested that optimizing building layouts in high-density 
cities can reduce waterlogging risks better than improving drainage 
facilities. Li et al. (2021) observed that the distribution, flow depth, and 
flow velocity of waterlogging are affected by building layouts. Lin et al. 
(2021) developed a regression model that considers building indicators 
to explain the waterlogging risk. Bruwier et al. (2018) analyzed the 
relationship between urban patterns and surface runoff and concluded 
that the primary factor affecting waterlogging was the building coverage 
ratio. However, all these studies have yielded inconsistent conclusions. 
This inconsistency may be attributed to the research scale; that is, the 
influence of the same influencing factor may vary at different scales. The 
scale effect of urban vertical patterns on waterlogging is still unknown 
from the international literature. 

It is difficult to comprehensively reveal the factors that affect 
waterlogging based on a single research scale and several studies have 
investigated the factors affecting waterlogging at multiple scales. For 
example, Zhang et al. (2018) reported that impervious surfaces 
explained 5.0–48.1% of the variability in urban waterlogging risk spots, 
with increasing explanatory power observed at the 1 km, 3 km, and 5 km 
grid scales. Lu et al. (2022) found that radar fusion data are effective for 
urban-scale typhoon pluvial flood modeling, while station observation 
data are better suited for neighborhood-scale modeling. Zhang et al. 
(2020b) revealed that topographic factors dominate at small scales (1–2 
km), while land cover composition and spatial configuration become 
more important for waterlogging at larger scales (3–5 km). Therefore, 
the optimal waterlogging management scale should be carefully deter
mined. Although previous studies have analyzed the factors influencing 
waterlogging from a multiscale perspective (Fewtrell et al., 2008; Tar
amelli et al., 2022), much less effort has been devoted to determining the 
differences in the impacts of urban vertical patterns on waterlogging at 
different research scales. 

Failing to acknowledge the scale effect could lead to underestimating 
the waterlogging hazards in high-density urban environments and 
misunderstanding the effectiveness of mitigation strategies. If the non- 
linear scale effect of urban vertical patterns on waterlogging is prop
erly assessed, then more informative support can be provided for 
waterlogging management by policymakers. Therefore, this study aims 
to reveal the scale effect of urban vertical patterns on waterlogging. We 
first explored the spatial patterns and agglomeration effects of water
logging events. Next, machine learning methods were used to discover 
the relationship between the density of waterlogging points and possible 
influencing factors at multiple grid scales. These results provide multi
scale planning guidance for regions experiencing severe waterlogging 
issues. 

2. Data and methods 

2.1. Case study 

We selected Shenzhen, which has severe waterlogging issues and a 
high building density, as a case study (Fig. 1). By the end of 2020, built- 
up areas accounted for 45.76% of the city’s total land area. Shenzhen is 
located in a subtropical monsoon climate zone with a high frequency 
and intensity of extreme rainstorms (Lin et al., 2024). For example, the 
recent extreme rainstorm on September 7, 2023, caused a severe 
waterlogging disaster. Therefore, the Shenzhen government is 
committed to improving strategies for preventing and controlling 
waterlogging. Understanding the factors that influence waterlogging at 
different scales can provide reasonable support for waterlogging pre
vention and control in Shenzhen and other cities with severe water
logging issues. 

2.2. Data sources and processing 

The data used in this study included the spatial distribution of the 
waterlogging points and potential influencing factors. Detailed data are 
shown in Table 1, Fig. 2, and Table S1. It should be noted that a building 
indicator system can facilitate the quantitative analysis of urban vertical 
patterns. Building indicators are considered primary metrics for evalu
ating urban vertical patterns and have been extensively employed to 
characterize urban vertical development (Cao et al., 2021; Chen et al., 
2020; Guo et al., 2023; He et al., 2017; Salvati et al., 2013; Wang et al., 
2023c). For example, Chen (2022) used building footprints to compute 
vertical metrics of urban land parcels and simulate dynamic changes in 
urban vertical patterns. Zheng et al. (2017) investigated the changes in 
urban vertical patterns (i.e., building heights) in Beijing over time and 
analyzed their relationships with urban horizontal patterns. Al-Kod
many (2018) considered buildings with four or more floors as indicators 
of vertical urban growth. Therefore, this study characterized urban 
vertical patterns based on a series of building indicators. 

The scale of analysis was determined by considering the spatial 
distribution of waterlogging points, the number of grid units, and the 
applicability to planning. This approach allows us to accurately assess 
the situation and make informed decisions. First, we performed an 
average nearest-neighbor analysis of the waterlogging points and found 
that the observed mean distance between the waterlogging points was 
approximately 830 m. Because the grid size should be greater than the 
observed mean distance, the minimum grid size was determined to be 1 
km. Subsequently, with an interval of 1 km, we successively constructed 
2–5 km grids. This resulted in 2181 grids of 1 km size and 117 grids of 5 
km size. This indicates that the number of available grids will be too 
small if the scale size continues to increase as the grids with null records 
need to be excluded. Therefore, 1-, 2-, 3-, 4-, and 5 km grids were 
adopted in this study (Fig. 3). Only grids with both buildings and 
waterlogging points were included in the analysis. It is important to note 
that the selection of a 1 km interval is important for the development of 
comprehensive scales that cover different levels of urban planning units, 
including communities (approximately 1–2 km), subdistricts (approxi
mately 3–4 km), and districts (approximately 5 km). These grids facili
tate the assessment of the scale effect on waterlogging and the 
formulation of planning recommendations at each level. 

2.3. Methods 

The procedure used in this study is illustrated in Fig. 4. First, we 
measured urban vertical patterns (Table S1) based on building infor
mation. Second, we analyzed the spatial characteristics of the water
logging points. Third, machine learning methods were used to 
investigate the multiscale relationships between the waterlogging point 
density and influencing factors. Finally, suggestions for urban planning 
are provided based on the scale effects of the urban vertical patterns on 
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waterlogging. 

2.3.1. Kernel density of waterlogging points 
The kernel density estimation method is used to calculate the density 

of the objects in the surrounding neighborhood. We used this method to 
reflect the kernel density and the spatial pattern of the waterlogging 

points in Shenzhen. The kernel density estimation formula is as follows: 

fn(x) =
1
nh

∑n

i=1
k
(x − xi

h

)
(1)  

where fn is the estimated kernel density of the waterlogging points, n is 
the number of waterlogging points within the bandwidth, k is the kernel 
function, x-xi is the distance between waterlogging points x and xi, and h 
is the radius. 

2.3.2. Spatial autocorrelation of waterlogging points 
The spatial autocorrelation method reveals the distribution patterns 

of geographic objects based on their locations and features, and both 
global and local spatial autocorrelations are used. The global spatial 
autocorrelation describes the spatial characteristics of geographic ob
jects in the study area and can be evaluated using Moran’s I index, the z 
score, and the p-value. We used the global Moran’s I index to determine 
the spatial correlation of the waterlogging points in Shenzhen at 1–5 km 
grid scales. The calculation is as follows: 

Moran’s I =

∑n

i=1

∑n

j=1
wij(xi − x)

(
xj − x

)

S2
∑n

i=1

∑n

j=1
wij

(2)  

S2 =
1
n
∑n

i=1
(xi − x)2

, x =
1
n
∑n

i=1
xi (3)  

where n is the sample size, xi and xj are the observed values at locations i 
and j, respectively, wij is the spatial weight between i and j, and S2 is the 
standard deviation. 

Local spatial autocorrelation identifies the spatial clustering of 
geographic objects with high or low values within an area. In this study, 
local spatial autocorrelation was used to evaluate the aggregation and 
differentiation characteristics of waterlogging points at the local scale. 
The calculation is as follows: 

Fig. 1. Overview of the study area.  

Table 1 
Detailed data used in this study.  

Primary data Secondary data Detailed 
information 

Source 

Waterlogging 
points 

– – 

Shenzhen Water Affairs 
Bureau, Shenzhen 
Meteorological Bureau, 
and the Atlas of Sponge 
City Planning in Shenzhen 

Building Building 
indicators 

Building 
location, 
number of 
floors 

Map of Gaode 

Land use 

Impervious 
surface ratio 

10 m 
resolution 

Tsinghua University ( 
Gong et al., 2019) 

Green area ratio 
Waterbody 
ratio 

DEM 

Elevation 

30 m 
resolution 

Geospatial data cloud 
platform 

Slope 
Surface relief 
Ground 
roughness 

Population 
Population 
density 

100 m 
resolution 

WorldPop 

NDVI – 
1000 m 
resolution 

Chinese academy of 
sciences 

Extreme 
rainstorm 

Number and 
peak volume of 
rainstorms 

1000 m 
resolution 

China Scientific Data 
Network 

Overpass 
Distance to 
overpass 

– Map of Gaode  
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Ii =
(xi − x)

S2

∑m

i=1
wij(xi − x) (4)  

where Ii is the local Moran’s I index, and m is the number of adjacent 
units of unit i. There were five types of local autocorrelation, namely 
“high–high agglomeration”, “high–low agglomeration”, “low–high 
agglomeration”, “low–low agglomeration”, and “not significant”. 

2.3.3. Pearson correlation analysis 
In this study, Pearson correlation analysis was conducted to measure 

the correlation coefficient between the density of waterlogging points 
and possible influencing factors. The calculation is as follows: 

ρXY =
N
∑N

I=1xiyi −
∑N

i=1xi
∑N

i=1yi
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑N

I=1xi
2 −

( ∑N
I=1xi

)√

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑N

I=1yi
2 −

( ∑N
I=1yi

)
2

√ (5)  

where ρXY is the Pearson correlation coefficient, X and Y represent the 
two sets of variables with X = (x1, x2…, xN) and Y = (y1, y2…, yN), and N 
is the sample size. In this study, X denotes the influencing factors (e.g., 
urban vertical pattern indicators), and Y denotes the density of the 

waterlogging points. 

2.3.4. Random forest 
The multivariate linear regression model is commonly used to reveal 

the effects of independent variables on dependent variables; however, 
the presence of multicollinearity degrades its performance. To overcome 
the limitations of multivariate linear regression, we used random forest 
regression to identify the factors influencing waterlogging. The random 
forest model is not sensitive to multicollinearity. In addition, this model 
reduces the risk of overfitting through random sampling and random 
feature selection (Rafiei-Sardooi et al., 2021; Tang et al., 2021; Zhao 
et al., 2023). 

The random forest algorithm is a decision-tree-based machine 
learning approach that combines different decision trees to form an 
ensemble model. Random forests can process high-dimensional 
nonlinear datasets and effectively handle regression and classification 
problems. In addition, out-of-bag samples that were not selected in the 
random sampling process can be used to evaluate the performance of the 
model and measure the importance of different independent variables. 
Generally, three types of indicators can be used to evaluate the 

Fig. 2. Spatial data used in this study.  
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performance of a model: root mean square error (RMSE), mean absolute 
error (MAE), and goodness of fit (R2). A larger R2 and smaller RMSE and 
MAE values indicate more accurate results. 

3. Results and analysis 

3.1. Spatial characteristics of the waterlogging points in Shenzhen 

We first analyzed the spatial pattern and agglomeration effects of 
waterlogging events in Shenzhen. The results provide insights into the 
spatial characteristics of waterlogging and support the implementation 
of disaster prevention and reduction measures. 

3.1.1. Kernel density of the waterlogging points in Shenzhen 
The kernel density analysis (Fig. 5) revealed multicore aggregation 

among the waterlogged areas in Shenzhen, with varying degrees of ag
gregation across different regions. The western part was classified as a 
high-density area, the central part as a medium-density area, and the 
eastern part as a low-density area. Within the high-density area, three 
major agglomerations were identified: a belt-shaped agglomeration in 
the western part of Shenzhen, an agglomeration located at the junction 
of Longhua District and Longgang District, and an agglomeration 
spanning Futian District, Luohu District, and Longgang District. The 
medium-density area consisted of the northeastern part of Longgang 
District and the northwestern part of Pingshan District, while the low- 
density area was mainly distributed in southeastern Shenzhen. 

Fig. 3. Scale size and corresponding grids.  
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The western agglomeration close to the Pearl River Estuary has a flat 
topography, rendering it vulnerable to tidal influences that hinder the 
effective drainage of stagnant water. In addition, numerous industrial 
manufacturing parks are located in this region, resulting in a greater 
proportion of impervious surfaces and imperfect drainage systems. 
Longhua and Longgang districts mainly experience extreme rainfall 
because of their low and flat terrain, high industrial concentration, and 
high proportion of impervious surfaces. Futian and Luohu districts are 
the central urban areas of Shenzhen, with dense populations and 
concentrated building clusters, but their drainage systems have not kept 
up with the increasing construction. Therefore, these areas are at great 
risk of waterlogging during extreme rainstorms. 

3.1.2. Spatial autocorrelation of waterlogging points in Shenzhen 
The global spatial autocorrelation results (Table 2) indicated a sig

nificant agglomeration effect of waterlogging points at 1–5 km grid 
scales. However, the Moran’s I values varied at different scales, with the 
highest values observed at the 2 km grid scale, indicating that the 
agglomeration trend of waterlogging points in Shenzhen was the 

strongest at the 2 km scale. This suggests that the implementation of 
disaster prevention and mitigation measures should be conducted at this 
scale. 

In addition, we utilized local spatial autocorrelation to examine the 
clustering patterns of waterlogging points across multiple grid scales, 
and the results are presented in Fig. 6. Only two local clustering patterns, 
namely, “high–high cluster” and “low–low cluster”, were identified 
across all the scales. The northern part of Shenzhen exhibited a signifi
cant degree of a “high–high cluster”, while the southern part showed an 
apparent “low–low cluster” pattern. Overall, the distributions of 
waterlogging hot spots and cold spots in Shenzhen remained relatively 
equivalent across all grid scales. The “high–high cluster” patterns were 
mainly identified in the northern Bao’an District, Guangming District, 
northern Longhua District, northern Longgang District, and north
western Pingshan District. The “low–low cluster” was primarily 
concentrated in the southern Bao’an District, Nanshan District, Futian 
District, and southwestern Luohu District. 

Fig. 4. Assessing the influencing factors of waterlogging at multiple scales.  
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3.2. Correlations between the density of waterlogging points and 
influencing factors 

The results of Pearson correlation analysis at 1–5 km grid scales were 
compared, as shown in Table 3 and Fig. 7. Population density exhibited 
statistical significance at all grid scales, and elevation, slope, and NDVI 
passed the significance test at 2–4 km grid scales. Based on the changes 
in correlation coefficients, elevation, slope, and NDVI peaked at the 3 
km grid scale. In addition, the correlation coefficient of population 
density peaked at the 4 km grid scale. Furthermore, the distance to the 
overpass increased from 0.162 at the 2 km grid scale to 0.370 at the 4 km 
grid scale. These results demonstrate that the 3–4 km grid scales are the 
best management units for natural and socioeconomic influencing fac
tors. Although the absolute values of the correlation coefficients for the 
influencing factors were relatively close at the 1 km grid scale, the ab
solute values for the proportions of impervious surfaces, green space, 
building density, building coverage, and building crowding were greater 
than those for elevation, slope, NDVI, and distance to the overpass at the 
2–5 km grid scale. Therefore, it can be concluded that land use and 
vertical patterns have a greater influence on waterlogging than natural 
factors. 

Among the land-use factors, the correlation coefficients for the pro
portions of impervious surfaces and green spaces passed the significance 

test at all grid scales. Overall, the correlation coefficients (absolute 
values) for the proportions of impervious surfaces and green spaces 
increased with increasing grid scale, peaked at the 3 km grid scale, and 
then declined. 

In terms of vertical patterns, the HBH (highest building height), BCR 
(building coverage ratio), and BCD (building crowding degree) all 
passed the significance tests at grid scales of 1–5 km. Furthermore, 
highly significant positive associations were found between BD (build
ing density) and the density of waterlogging points at grid scales of 2–5 
km. As the scale size increased, the correlation coefficients for the BCR, 
BCD, and BD increased and surpassed those for the proportions of 
impervious surfaces and green spaces. The highest correlation was 
observed at a grid scale of 5 km. Therefore, the vertical patterns grad
ually replaced the horizontal patterns as the primary determinant of 
waterlogging with increasing scale size. 

We compared the influencing factors that passed the significance test 
at different grid scales. The results showed that the number of influ
encing factors significantly associated with waterlogging point density 
at grid scales of 1 km and 5 km was less than that at the 2–4 km grid 
scales. This indicates that a small scale may be inadequate for capturing 
the impact of agglomeration, whereas a large scale may overlook the 
differences within finer statistical units. Both situations are unfavorable 
for revealing the complex mechanisms underlying waterlogging. In 
addition, the correlation coefficients for the influencing factors varied at 
different scales. Therefore, it is crucial to prioritize the dominant 
influencing factors in spatial planning across different control units. 
Particularly, the rational arrangement of urban vertical patterns at 
larger scales requires greater attention. This approach provides practical 
and comprehensive recommendations for the prevention and control of 
waterlogging. 

Fig. 5. Results of kernel density analysis for waterlogging points in Shenzhen.  

Table 2 
Global Moran’s I index of waterlogging points in Shenzhen at different scales.  

Grid size (km) Moran’s I z score p-value 

1 0.9684 28.1494 0.0000 
2 0.9735 31.5285 0.0000 
3 0.9533 24.9647 0.0000 
4 0.9219 19.9755 0.0000 
5 0.7768 16.0988 0.0000  
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Fig. 6. Local spatial autocorrelation of waterlogging points at 1–5 km grid scales.  

Table 3 
Correlation between the density of waterlogging points and influencing factors at 1–5 km grid scales.   

Influencing factors Scale 

1 km 2 km 3 km 4 km 5 km 

Land use 
Water body proportion − 0.001 − 0.136* − 0.157 − 0.179 − 0.225 
Impervious surface proportion 0.148** 0.369** 0.528** 0.507** 0.458** 
Green space proportion − 0.151** − 0.356** − 0.522** − 0.494** − 0.423** 

Vertical patterns 

BD 0.093 0.308** 0.483** 0.532** 0.583** 
TBH 0.147** 0.204** 0.231** 0.225* 0.362** 
SDBH 0.081 0.096 0.105 0.081 0.219 
BCR 0.186** 0.374** 0.491** 0.519** 0.575** 
BCD 0.151** 0.379** 0.511** 0.565** 0.577** 
BSC − 0.080 − 0.077 − 0.157 − 0.003 − 0.100 
MBH 0.023 0.024 0.002 − 0.051 0.073 
MBV 0.046 − 0.009 − 0.022 − 0.143 − 0.061 
SDBV 0.084 0.087 0.025 − 0.034 0.036 

Natural, socioeconomic conditions 

Elevation − 0.086 − 0.236** − 0.320** − 0.270** − 0.184 
Slope − 0.086 − 0.244** − 0.398** − 0.337** − 0.233* 
NDVI − 0.029 − 0.186** − 0.244** − 0.216* − 0.084 
Distance to overpass − 0.091 − 0.162* − 0.260** − 0.370** − 0.359** 
Population density 0.183** 0.344** 0.488** 0.526** 0.470** 
Number of rainstorms 0.044 0.026 0.088 0.056 − 0.027 
Peak volume of rainstorms − 0.075 − 0.049 0.029 0.006 0.075 

Note: “**” represents a significant correlation at the 0.01 level (two-sided); “*” represents a significant correlation at the 0.05 level (two-sided). The vertical pattern 
factors are introduced in Table S1. 
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3.3. Contribution rate of the influencing factors 

The results in Table 4 show that the coefficients of determination for 
the random forest regression models are >0.96 at all grid scales, sug
gesting favorable model-fitting outcomes. Furthermore, the random 
forest regression models exhibited low MAE and RMSE values, indi
cating a high level of reliability. 

Fig. 8 shows the contribution rates of all the influencing factors at the 
five grid scales. Based on their contribution rates, the factors were ar
ranged in descending order within each scale. They were added cumu
latively, starting with the highest contributing factor until the 
contribution rate reached 50%. At this point, the influencing factors 
included were considered dominant for that particular scale. The 
dominant influencing factors at each grid scale were as follows: BCR, 
SDBV (standard deviation of building volume), HBH, population den
sity, MBV (mean building volume), BSC (building shape coefficient), 
distance to overpass, BCD, and MBH (mean building height) (1 km); 
BCD, BCR, population density, proportion of impervious surfaces, BD, 
the proportion of green space, HBH, and SDBH (standard deviation of 
building height) (2 km); BD, the proportion of impervious surfaces, the 
proportion of green space, population density, BCD, and BCR (3 km); 
BCR, BCD, population density, the proportion of green space, the pro
portion of impervious surfaces (4 km); and BCD, BCR, BD, population 
density, and HBH (5 km). 

We analyzed the occurrence frequencies of the 13 dominant influ
encing factors at all grid scales (Fig. 9). The results revealed that 
building coverage, building crowding, and population density were 
present at all five scales, whereas building density, highest building 
height, proportion of impervious surfaces, and proportion of green 
spaces were observed three times. The remaining dominant influencing 
factors were observed only once. Therefore, BCD, BCR, BD, population 
density, the proportion of impervious surfaces, the proportion of green 
space, and HBH can be regarded as critical factors affecting water
logging in Shenzhen. The cumulative contribution rates of these seven 
key influencing factors at 1–5 km grid scales were 52.16%, 51.50%, 
37.80%, 35.88%, 32.59%, 31.36%, and 26.77%, respectively (Fig. 10). 

In the order of contribution rates, the seven most significant influ
encing factors are BCD, BCR, BD, population density, the proportion of 
impervious surfaces, the proportion of green space, and HBH (Figs. 9 
and 10). In other words, vertical patterns and land use have a significant 

influence on waterlogging, with the former having an even greater 
influence. 

We further compared the changes in the contribution rates of the 
seven factors at different grid scales. Fig. 11 shows that the influencing 
factors with the highest contribution rates are the BCR (1 km and 4 km), 
BCD (2 km and 5 km), and BD (3 km). As the grid expanded, the 
contribution rate of the BCD showed an upward trend, whereas that of 
HBH showed a decrease. The contribution rates of the BCR, BD, popu
lation density, the proportion of impervious surfaces, and the proportion 
of green space exhibited upward trends, peaked, and then declined 
significantly. 

Although there was an overall increase in the contribution rates of 
the vertical patterns, distinct vertical pattern factors exhibited varia
tions in their changes. Furthermore, most of the influencing factors 
contributed significantly to waterlogging at the grid scale of 3 km, 
suggesting that this particular scale can be considered the primary 
planning unit for each influencing factor. Urban planning departments 
must carefully select the research scale and undertake prudent planning 
of urban vertical patterns at an appropriate scale. 

4. Discussion 

4.1. Influence mechanism of urban vertical patterns on waterlogging 

Previous studies have primarily focused on the influence of urban 
horizontal patterns on waterlogging. For example, Jiang et al. (2023) 
analyzed the effects of land-surface changes on waterlogging in Kunm
ing City, from 2012 to 2020, and reported that the risk of waterlogging 
increased when the land surface permeability dropped below 35%. Lin 
et al. (2022) identified specific land-use factors, such as the proportions 
of impervious surfaces and green spaces, as major contributors to 
waterlogging disasters. It is essential to account for the dynamic changes 
in land use when forecasting future waterlogging-prone locations. The 
ongoing expansion of built-up areas destroys pre-existing river networks 
and water systems, disrupting the hydrological and ecological equilib
rium of cities. This intensifies the burden on drainage systems, thereby 
increasing the frequency of waterlogging events (Feng et al., 2020; 
Houghton and Castillo-Salgado, 2020; Mustafa et al., 2020; Zhao and 
Huang, 2022). However, changes in urban horizontal patterns also result 
in alterations in urban vertical patterns. Therefore, an in-depth inves
tigation of the influence of urban vertical patterns is essential to fully 
understand the mechanisms underlying waterlogging. 

Zhou et al. (2022) and Li et al. (2023b) suggest that building 
crowding is the most important factor in urban waterlogging. Bruwier 
et al. (2018) report that building coverage ratio has the greatest influ
ence on waterlogging. According to Son and Ban (2022), the proportion 
of detached buildings contributes significantly to waterlogging. Wang 
et al. (2023a) demonstrated that controlling the maximum building 

Fig. 7. Comparison of correlation coefficients for all factors at different scales.  

Table 4 
Accuracy of the random forest regression models at different scales.  

Indicator 1 km 2 km 3 km 4 km 5 km 

R2 0.9773 0.9684 0.9667 0.9718 0.9689 
MAE 0.2878 0.2810 0.2382 0.2481 0.2303 
RMSE 0.3840 0.3460 0.3028 0.3070 0.3031  
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volume and building density within certain ranges can mitigate the risk 
of waterlogging. Thus, different studies have drawn inconsistent con
clusions, possibly because of the varying contributions of the same 
influencing factors across different research scales. For example, this 
study reveals that the building coverage ratio is the most important 
influencing factor at scales of 1 km and 4 km, whereas the degree of 
building crowding has a great impact at scales of 2 km and 5 km. 
Furthermore, the dominant waterlogging factors vary across different 
scales. Even if a strong correlation is found between a specific building 
indicator and waterlogging at a particular scale, there is no guarantee 
that the correlation will remain significant upon adjusting the research 
scale. 

Therefore, we conducted a multiscale analysis with 1–5 km grid 
scales and found that the building crowding degree, building coverage 
ratio, and building density are the most influential factors across all 
scales. Among these factors, the building crowding degree represents the 
proportion of space occupied by buildings in an urban space, while the 
building coverage ratio and building density measure the concentration 
of buildings. These factors indirectly reflect the influence of building 
agglomerations on urban waterlogging. These factors affect urban 
waterlogging in two ways regarding water production and drainage. 
First, an increase in building crowding degree, building coverage, and 
building density allows more people and human activities in the region. 
Simultaneously, the compact vertical patterns alter the airflow in the 
city, aggravating the “heat island effect” and “rain island effect” and 
amplifying the frequency and intensity of extreme weather events. 
Second, an increase in the degree of building crowding, building 
coverage, and building density implies a larger proportion of impervious 
surfaces in the region (Liu et al., 2020; Voskamp and Van de Ven, 2015; 
Yu et al., 2021). This weakens water infiltration and increases the 

pressure on the drainage system, causing an increase in the amount and 
rate of water produced and a decrease in the amount and rate of water 
drained (Fowler et al., 2021; Kim and Park, 2016; Wu et al., 2020; Zhang 
et al., 2015). In this regard, we investigated the effect of urban vertical 
patterns on urban waterlogging across multiple spatial scales. The 
findings provide valuable insights for urban planning departments to 
mitigate waterlogging through building planning and facilitate the 
effective implementation of disaster prevention and reduction 
strategies. 

4.2. Scale effect of urban vertical patterns on waterlogging 

Most previous studies have explored the factors that affect urban 
waterlogging exclusively at a single scale. In contrast, this study con
ducted a multiscale analysis to examine the spatial aggregation of 
waterlogging points at grid scales ranging from 1 km to 5 km. Further
more, this study explored the influence of vertical patterns on water
logging from a multiscale perspective. Urban waterlogging is a complex 
process and the influence of urban vertical patterns on waterlogging is 
scale-dependent. Identifying the critical scale at which building in
dicators affect waterlogging is important for national land use planning 
and related policy adjustments. Identifying the scale effect of the in
fluence of urban vertical patterns on waterlogging can facilitate the 
rational regulation of urban planning and building design across 
different management and control units from a macroscopic perspective. 
This approach provides essential decision-making support for multi- 
level urban planning and management. 

The correlation coefficients of waterlogging with the highest build
ing height, building coverage ratio, building crowding degree, and 
building density are relatively high at grid scales of 1–5 km. The random 

Fig. 8. Contribution rates of all influencing factors at different scales.  
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Fig. 9. Occurrence frequencies of dominant influencing factors at different scales.  

Fig. 10. Cumulative contribution rates of seven key influencing factors at different scales.  
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forest regression model also reveals the significant contribution of these 
factors, identifying them as the dominant influencing factors of water
logging. However, the sensitivity of these factors to different scales 
varies. The correlation between the highest building height and water
logging was significant only at a small scale (1 km). This result may be 
attributed to the fact that the tallest buildings pose the greatest chal
lenges to drainage systems at smaller scales. Furthermore, the correla
tion between the number of buildings and waterlogging increased when 
the research scale was expanded to 3 km. This indicator directly reflects 
the agglomeration effect of the buildings. The drainage efficiency in 
building-dense areas is low, which increases the risk of waterlogging. 
When the research scale was expanded to 5 km, the negative effects of 
the urban vertical patterns on various environmental problems 
increased. As building crowding can directly affect urban airflow 
movement and heat dissipation, this indicator is the primary factor 
affecting waterlogging. In conclusion, our multiscale analysis effectively 
reveals the complex mechanisms behind urban waterlogging and iden
tifies optimal research scales for land-use optimization. 

Our findings highlight the importance of considering the scale effect 
when addressing waterlogging issues. In addition to urban vertical 
patterns, landscape configuration and topography also have varying 
impacts on waterlogging at different scales. Topographic factors are 
more significant at smaller scales (200 m and 400 m), while landscape 
indices of built-up areas (e.g., total edge) have a stronger correlation at 
larger scales (600 m and 800 m) (Wang et al., 2022). In addition, urban 
vertical patterns also exhibit non-linear scale effect on various other 
urban environmental factors, such as land surface temperature, air 
temperature, and wind speed. Notably, it has been observed that urban 
vertical patterns have a greater impact on land surface temperature at 
small scales (<105 m) (Guo et al., 2023). The building morphology is 
closely related to the wind speed at 500 and 1000 m scales, and the 
correlation between the building morphology and air temperature in
creases with scale. These findings suggest that the 500–1000 m range is 
the most effective scale for predicting urban air temperature and wind 
speed (Cao et al., 2021). The above studies demonstrate the importance 
of investigating scale effect in urban environmental impact assessments 
and policy formulation. 

4.3. Suggestions for waterlogging mitigation considering scale effects 

Based on the analysis conducted, this study recommends the 
following measures for the construction of sponge cities in large urban 
areas. First, planning departments should avoid the stereotypical 
thinking that relies solely on sewer pipes and pumping stations for 

drainage. Instead, the optimization of urban vertical patterns should be 
prioritized. Local governments should strictly regulate the planning and 
design of high-rise and super high-rise buildings to control the unregu
lated expansion of cities in the vertical direction. In addition, it is 
necessary to optimize the spatial layout of buildings at an appropriate 
scale, limit the number of buildings, and manage the concentration of 
built-up areas in the horizontal dimension. Special consideration should 
be given to constructing urban “blue–green spaces” as a solution for 
waterlogging risks through a combination of human intervention and 
natural regulation. 

Second, planning departments should implement precise disaster 
prevention and reduction strategies based on optimal management and 
control units and the most critical influencing factors. The effects of 
various factors on waterlogging should be considered when formulating 
disaster prevention and mitigation measures at different scales. Specif
ically, the correlation coefficients and contribution rates of each influ
encing factor exhibit similarities at a small scale. In comparison, 
significant differences are observed when these values are examined at a 
large scale. Therefore, it is crucial for small-scale areas to conduct a 
comprehensive evaluation of multiple factors and implement integrated 
control measures, including the development of a comprehensive flood 
resistance indicator system at the community level and the assessment of 
the collective impacts of these indicators (Zhong et al., 2020). For large- 
scale implementation, centralized control of the dominant influencing 
factors is necessary to improve the overall effectiveness of disaster 
prevention through accurate implementation of appropriate measures. 

Finally, it is essential to carefully consider the appropriate scale for 
different planning objectives. For example, a 3 km grid is recommended 
as the optimal management unit for impervious surfaces and green 
spaces, suggesting that the development of gray–green infrastructure 
should be planned at this scale. In addition, a 4 km grid is appropriate for 
assessing the building coverage rate, while a 5 km grid is preferable for 
assessing building crowding degree. The scale effect is important in 
urban waterlogging mitigation, and tailoring strategies to different 
scales and planning objectives can significantly improve waterlogging 
management. Our findings provide precise and effective recommenda
tions for implementing emergency strategies against waterlogging, 
thereby enhancing the effectiveness of waterlogging control. 

Moreover, it is also important to consider other aspects, such as the 
collaborative optimization of impervious surfaces and drainage systems 
in urban renewal (Ke et al., 2024), the enhancement of rainwater 
management through green and gray infrastructure (Li et al., 2024), and 
the improvement of dynamic urban flood modeling for better flood 
warning systems and emergency response (Xia et al., 2017). These ef
forts collectively promote the development of “sponge cities” and 
“resilient cities”. 

4.4. Limitations and future research directions 

This study has several limitations that require further improvement. 
First, we focused mainly on natural and socioeconomic conditions, land 
use types, and urban vertical patterns as influencing factors without 
considering the planning of drainage networks. Second, this study only 
examined Shenzhen, a city with frequent waterlogging and high build
ing density, as a case study. However, further research is required to 
evaluate the relevance of these findings to other regions. Third, while 
the study assessed the influence of current land use conditions, it did not 
consider the potential impact of future land use changes on water
logging. Fourth, the impact of building function type on urban water
logging was not considered due to data availability. Finally, although 
the study analyzed the impact of different factors on waterlogging at 
different scales, it did not explore the interaction effects of these factors 
or their combined contributions to waterlogging. 

Consequently, future research should collect comprehensive and 
detailed information on building functions and urban drainage networks 
in diverse urban settings. Moreover, future research should include 

Fig. 11. Changes in the contribution rates of seven key influencing factors at 
different scales. 
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various types of cities to draw more generalized conclusions. Addi
tionally, further research could investigate the potential impacts of 
different climatic conditions, urban planning strategies, policy in
terventions, and future land use changes on the observed scale effect. It 
is also important to consider the cumulative impacts of these factors on 
waterlogging. Finally, future research could benefit from a more in- 
depth examination of the nonlinear relationship between urban verti
cal patterns and waterlogging, as well as an exploration of potential 
variations in critical thresholds across different scales. 

5. Conclusions 

Because the influence of urban vertical patterns on waterlogging is 
subject to an obvious scale effect, precise management and control of 
waterlogging are essential. Failing to acknowledge the scale effect could 
lead to the underestimation of waterlogging hazards in high-density 
urban environments and misunderstanding the effectiveness of mitiga
tion strategies. To address the limitations of previous studies, we first 
analyzed the spatial distribution and clustering patterns of waterlogging 
events. We then investigated the influence of urban vertical patterns on 
waterlogging based on Pearson correlation analysis and a random forest 
model, highlighting their scale effects. 

The results revealed a multinuclear aggregation pattern of water
logging points in Shenzhen, with three main agglomeration areas; the 
waterlogging points in northern Shenzhen displayed a significant 
agglomeration effect. Correlation analysis and random forest regression 
models demonstrated that the building crowding degree, building 
coverage rate, and building density were the most important factors 
influencing waterlogging. These factors increase the frequency of 
extreme rainstorm events mainly by exacerbating the “heat island ef
fect” and the “rain island effect”. In addition, a sharp increase in these 
factors lowers the proportion of blue–green space and leads to greater 
surface runoff. 

Notably, urban vertical patterns exhibit a discernible scale effect on 
waterlogging, and a grid of approximately 3 km is the optimal research 
scale. When the research scale was increased to 3 km, the influence of 
urban horizontal patterns on waterlogging reached a certain limit, 
whereas the influence of urban vertical patterns increased with scale. 
Therefore, effective urban planning requires a research scale suitable for 
uncovering the influence mechanisms behind waterlogging. Our study 
thoroughly assessed the nonlinear scale effect of urban vertical patterns 
on waterlogging and thus can provide informative support on water
logging management for policymakers. 
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